
POLYNOMIAL FLOW MATCHING

ABSTRACT. Flow Matching (FM) is a scalable framework for training continuous-time generative models by learning velocity
fields that transport a simple base distribution to a complex data distribution. Linear trajectories, however, constrain the
transport process and require generating all dimensions simultaneously, which can be inefficient and limiting to structured
generation. We introduce Polynomial Flow Matching (PFM), an extension of FM that replaces linear transport paths with
higher-order polynomial trajectories passing through learned intermediate anchor states. These curved paths enable sequential
generation, with later components of the sample conditioned on earlier ones. Theoretically, we show that PFM reduces
sampling complexity by decreasing per-step attention costs. Empirically, we compare the linear optimal transport (OT) path
(baseline) to quadratic and quartic PFM variants on MNIST using a UNet-based flow matching architecture. Our results show
that quartic PFM model achieves comparable image quality to baseline linear OT FM model (FID 65.84 vs. 65.20) while
reducing sampling time compared to quadratic PFM. Although quadratic and quartic PFM does not yield empirical speedups
compared to the linear baseline, PFM still has significant potential as a framework for structured and efficient generation.

1. INTRODUCTION

Continuous-time generative models have emerged as a dominant paradigm for high-quality both image (Ho et al.,
2020) and text generation (Lou et al., 2024). Prior work positions these models as an alternative to autoregressive
models for data without a clear causal structure. Lipman et al. (2023) introduces one such model called Flow Matching
(FM). FM learns a velocity field that transports a simple base distribution (e.g. Gaussian noise) to a complex data
distribution via an ordinary differential equation (ODE).

While linear transport paths correspond to OT, they also inherently restrict the generative process. Real-world data
distributions are quite complex and not necessarily best captured by linear dynamics. Furthermore, linear paths often
force the model to generate the entirety of the sample simultaneously which can be harmful for two reasons:

• There is a limited opportunity for structured generation. For example, it could be favorable to generate one part
of an image before another, using the former as context.

• As we will show, generating the entirety of the image at once can be an inefficient use of compute during
sampling. Sampling efficiency is especially critical, as it is the central bottleneck for enabling the practical
deployment of continuous time generative models in a myriad of applications (Ulhaq and Akhtar, 2024).

This motivates approaches that decompose generation into smaller, conditional subproblems, enabling generation
that is more structured, controllable, and efficient. Generating partitions of an image sequentially, however, necessitates
additional anchoring nodes to provide context to the subsequent generations. If there exceeds three nodes, a straight-line
interpolation (i.e. optimal transport (OT)) no longer suffices as nodes are not necessarily co-linear.

In this work, we introduce Polynomial Flow Matching (PFM), a principled extension of Flow Matching that replaces
linear transport paths with polynomial trajectories. By fitting polynomial flows through learned intermediate anchor
points, PFM introduces curvature into the transport process. Crucially, polynomial trajectories enable sequential
subspace generation, conditioning later stages on earlier ones.

Our experiments demonstrate that Polynomial Flow Matching can achieve comparable sample quality relative to
linear Flow Matching while offering meaningful reductions in sampling cost for attention-dominated models. Beyond
efficiency, PFM offers a geometric view of transport, suggesting that the choice of path—not just the endpoints—plays
a critical role in scalable and structured generation.

Our contributions are as follows:

(1) PFM reduces the theoretical sampling complexity for attention dominated architectures. Our approach bridges
the strengths of continuous-time flow and autoregressive-style models.

(2) Through experiments on MNIST, we show that using our PFM model, a quartic polynomial yields a speed-up
over a quadratic while maintaining image quality. That is, the FID score for the quartic is the approximately
equal to the FID score using the OT path.

(3) We were unable to achieve a speedup experimentally for the quadratic model relative to the OT linear model on
MNIST and CIFAR-10. This is likely due to other overhead independent of the attention layer—exploring
these results further should be a subject of future work.

1

2 POLYNOMIAL FLOW MATCHING

2. RELATED WORK

2.1. Continuous Normalizing Flows. Continuous Normalizing Flows (CNFs) model generative processes by trans-
forming a simple base distribution into a complex target distribution via ordinary differential equations (ODEs). Chen
et al. (2018) established the framework of Neural ODEs, learning vector fields to define these continuous transformations.
However, training via ODE solvers is computationally expensive. To address this, Lipman et al. (2023) introduces
FM as a scalable way to train CNFs. Our work aims to reduce the computational cost of attention mechanisms in FM
models during sampling.

2.2. Diffusion Models and Structured Generation. Diffusion models generate data by reversing a gradual noising
process (Ho et al., 2020). While effective, their iterative nature incurs high sampling costs, motivating work on
accelerated solvers (Song et al., 2021; Lu et al., 2022) and noise scheduling (Nichol and Dhariwal, 2021). Beyond
speed, recent work has focused on structured generation. Cascaded models decompose generation into resolution stages
(Saharia et al., 2022), while recent advances in discrete domains have introduced “anchoring” to guide the generative
process. Specifically, Rout et al. (2025) propose first predicting key ”anchor” tokens to condition the reconstruction
of the remaining sequence. Our work bridges these works: we apply the intuition of non-linear interpolation from
Benamou et al. (2019) and the structured guidance of anchoring from Rout et al. (2025).

3. BACKGROUND

We follow Lipman et al. (2023) in describing CNFs. Consider a continuous time process over t ∈ [0, 1] that transports
samples from an initial distribution p0 at t = 0 to a target distribution p1 at t = 1. The vector field vt(x) globally
characterizes this transport process, providing a trajectory for each sample x at time t. This vector field describes a flow
ϕ : [0, 1]× Rd → Rd (i.e. the “position of the particle at time t”) via the ODE:

d

dt
ϕt(x) = vt(ϕt(x)), ϕ0(x) = x. (1)

For a correct choice of vt the transport procedure is simple: sample x0 ∼ p0; solve the ODE for t = 1; output
ϕ1(x0) ∼ p1. Thus, the aim is to learn a good velocity field.

In the context of generative modeling, our training data composes of samples from an unknown density q. We
must construct a path from a simple distribution p0 ∼ N(x|0, I) to a complicated distribution p1 ≈ q. To learn the
parameters of vt (i.e. θ), Lipman et al. (2023) introduces the flow matching objective

LFM(θ) = Et,pt(x)∥vt(x)− ut(x)∥2, (2)

Since the above objective is intractable, we can condition on the intended destination data sample x1. Lipman et al.
(2023) proves that the Flow Matching objective is equivalent to optimizing the Conditional Flow Matching objective

LCFM(θ) = Et,q(x1),pt(x|x1)∥vt(x)− ut(x|x1)∥2. (3)

Furthermore, Lipman et al. (2023) defines the conditional probability paths as

pt(x|x1) = N (x|µt(x1), σt(x1)
2I)

where we can choose functions µt and σt.
Consider the linear interpolation between the noise sample x0 ∼ N(0, I) and the data sample x1 as the flow map

ψt(x0) = (1− t)x0 + tx1. (4)

The above flow creates straight-line trajectories and implicitly defines the OT path described in Lipman et al. (2023)
(we assume σmin = 0 in our implementation).

E[ψt | x1] = t x1,

Var[ψt | x1] = (1− t)2I.
(5)

POLYNOMIAL FLOW MATCHING 3

ϕ0(x) = x0 (Noise)

Step 1

Step 2

Step 3

ϕ1(x) = x1 (Data)

Polynomial Flow ϕt(x)

vt0

vt1

vt2

vt3

FIGURE 1. Schematic of Polynomial Flow Matching (PFM). A polynomial flow ϕt(x) transports
samples from noise ϕ0(x) to data ϕ1(x) through intermediate anchor states that sequentially resolve
four d× (d/4) subspaces.

4. APPROACH

TABLE 1. Sampling-time complexity for polynomial flow matching with attention-dominated models.

Per-part shape Tokens per part Attention cost per step Total steps Total attention cost Speedup Polynomial degree

d× d d2 d4 T Td4 1× 1 (2 anchors)
d× d

2
d2

2
d4

4 2T Td4

2 2× 2 (3 anchors)
d× d

4
d2

4
d4

16 4T Td4

4 4× 4 (5 anchors)
d×

√
d d3/2 d3

√
d T Td7/2

√
d×

√
d (

√
d+ 1 anchors)

Table 1 motivates our approach. When attention dominates the computational cost, partitioning the generation space
into k equal-sized components and generating each component sequentially reduces the overall sampling complexity by
a factor of k (we can even achieve asymptotic speedup by setting the dimension to

√
d, although this is not practical).

Importantly, however, when generating components sequentially, the content produced in earlier components must
inform and condition the generation of subsequent components. Thus, we must take a page from the autoregressive
book. We change the interpolation between x0 and x1 such that it must pass through “anchor” points which provide
context from the prior generation. In case where the dimensions are d× d

2 , there is exactly one anchor point y1 (i.e. the
boundary between the top and bottom half). Since we must fit a polynomial to three points, using a linear model as
proposed in Lipman et al. (2023) becomes naive, as doing so would unduly assume that the three points are co-linear.
Thus, our polynomial must be of degree at least 2 (i.e. a quadratic) to fit three points.

Specifically,

ψt(x0) =

(1 + t)x1 − tx0, t ∈ [−1, 0],

x0L−1(t) + y1L0(t) + x2L1(t), t ∈ [0, 1],

where L−1, L0, L1 denote the quadratic Lagrange basis polynomials 1 with nodes {−1, 0, 1}, and y1 = fθ(x1) is a
learned intermediate representation.

The same logic follows for the d× d
4 case with three anchor points y1, y2, y3. The quartic flow map is

ψt(x0) =

(1 + t)x1 − tx0, t ∈ [−1, 0],

x0L−1(t) + y1L− 1
2
(t) + y2L0(t) + y3L 1

2
(t) + x4L1(t), t ∈ [0, 1],

whereL−1, L− 1
2
, L0, L 1

2
, L1 are the quartic Lagrange basis polynomials with nodes {−1, − 1

2 , 0,
1
2 , 1} and yi = fθi(·)

denote learned intermediate representations (Figure 1).
The transport paths are curved for the quadratic and quartic cases, so they are no longer OT. Our experimental aim is

to minimize the objective

1The Lagrange basis is defined generally as Lti =
∏

j ̸=i
t−tj
ti−tj

4 POLYNOMIAL FLOW MATCHING

∫ 1

0

DKL

(
pOT
t (x|x1) ∥ pPoly

t (x|x1)
)
dt, (6)

while still using a polynomial of sufficient degree to achieve the aforementioned speedup.

5. EXPERIMENTAL RESULTS

We evaluate and train our polynomial flow matching approach on the MNIST dataset, a widely-used benchmark
for generative modeling consisting of 28x28 grayscale handwritten digit images. Images are then preprocessed using
standard normalization techniques — input images are normalized from [0, 1] to [-1, 1] range (using the transform
x′ = 2x− 1), resized to their target dimensions via bilinear interpolation, and duplicated across 3 channels (replication)
to make use of standard FID computation libraries.

We trained three flow-matching models — one standard flow-matching model (which we determine to be our “linear
baseline” based on its linear spatial regime), one quadratic regime (which utilizes two sequential models to predict
16x32 each, fixing an anchor point with a quadratic spatial path), and one quartic regime (which utilizes four sequential
models of 8x32 predictions each, with four anchor points to create our quartic polynomial spatial path). All experiments
utilize the TorchCFM UNet architecture (used as library), a conditional flow matching model with attention mechanisms
that has shown strong performance on image generation tasks.

FIGURE 2. Training loss plots

Figure 2 shows the training losses, where we can see reasonably quick convergence among all models. For the two
polynomial regimes, we can see multiple losses that depict the loss taken by each successive model (see key), where
each successive model has lesser and lesser loss (absorbing in each stage the initial velocity prediction loss and the
portion after each anchor point). In each regime, we can see approximate convergence around 8 epochs, with minimal
loss reductions afterward.

We report two primary metrics — FID (Frechet Inception Distance) and sampling time per image (measured by
timing the time to generate a batch of i.e. 2048 images for each model, and averaging) — to measure the quality
of output and the efficiency of sampling output respectively, as we hope to improve the sampling efficiency while
maintaining image quality.
Sampling each of the three trained models for 2048 samples, we generate the following sample images at each compres-
sion and polynomial training fidelity — linear, quadratic, and quartic.

FIGURE 3. Sampling Results

POLYNOMIAL FLOW MATCHING 5

TABLE 2. FID and sampling speed comparison across polynomial flow variants.

Variant Size Compression FID Time / img (ms)

Linear (1st degree) 32× 32 1/1 65.1961 31.32
Quadratic (2nd degree) 16× 32 1/2 70.5654 35.04
Quartic (4th degree) 8× 32 1/4 65.8411 31.80

In the linear (baseline FM) sampling method, we can see the MNIST image shapes clearly in the majority of the
images, with relatively smooth lines and low noise — although with some confusing/nonsensical shapes, like the
top row’s third and fourth images. In contrast, although we can see the general associated shapes in the quadratic
polynomial method (sampled with two models at 16x32 each, flowing sequentially), the lines are much more choppy
and noisy. In the quartic method (with a quartic polynomial and four sequential samplings of four models at 8x32 each,
we can see yet again smoother and more defined shapes clearly resembling numerical outputs.

The FID scores of each method align with the qualitative results above, with the linear FM baseline achieving
an FID of approximately 65.19, the quadratic method yielding a slightly worse 70.57, and we can see that the FID
decreases again for the quartic method (at 65.84). Similarly with sampling time, we see that the linear FM model takes
approximately 31.32 ms of sampling time per image, and though this increases for the quadratic model (to 35.84 ms per
image), we can see it decrease again for higher-order splits in the quartic model (back down to 31.80ms).

This shows that the polynomial method is able to maintain FID and image quality but that sampling efficiency stays
roughly constant, though we believe that the decrease in runtime between the quadratic and quartic methods shows this
is could be largely due to overhead — and suggesting that the pattern could continue with future splits and higher-order
polynomial fitting. We repeat the above procedure for CIFAR-10 with the results included in the Appendix.

6. DISCUSSION AND FUTURE WORK

Although we were unable to match the theoretical sampling speedup, we are able to maintain FID and image quality
(as seen in FID evaluation and qualitative results) over the various polynomials. Furthermore, the increase in time from
linear to quadratic then the decrease to quartic suggests that the polynomial method produces high overhead, that is able
to decrease over further splits. Over larger images with even further splits, we might be able to achieve our anticipated
speedup while maintaining FID and image quality. We also performed an ablation examining more esoteric polynomial
paths over the d

2 split case (Figure 4). We can see that the quadratic case fits the anchor points much better than other
methods, which suffer in image quality.

In the future, we will improve the baseline FID score for OT to gain a more meaningful comparison. We also hope to
perform a full grid search over all possible sequential divisions (i.e. more divisions and in more dimensions) that may
help us yield better results as illustrated in Figure 8. Lastly, we hope to test our method on other U-Net architectures.
Additionally, while our analysis assumes attention-dominated sampling complexity, the lack of empirical speedup
suggests that attention may not be the dominant computational bottleneck for the architecture we considered. In practice,
fixed overheads such as convolutional operations can interfere with theoretical reductions in attention complexity. This
is consistent with our observation that quadratic and linear variants exhibit similar sampling times despite differing
theoretical attention costs. It is possible, however, that the theoretical benefit becomes visible experimentally when
evaluated at a larger scale.

FIGURE 4. Other polynomial paths for d
2 splits

6 POLYNOMIAL FLOW MATCHING

REFERENCES

Jean-David Benamou, Thomas Gallouët, and François-Xavier Vialard. Spline interpolation in the wasserstein space.
SIAM Journal on Imaging Sciences, 2019.

Ricky T.Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential equations.
Advances in Neural Information Processing Systems, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information
Processing Systems, 2020.

Yaron Lipman, Ricky T.Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747, 2023.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios of the data
distribution, 2024. URL https://arxiv.org/abs/2310.16834.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode solver for
diffusion probabilistic model sampling. Advances in Neural Information Processing Systems, 2022.

Alexander Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. International Conference
on Machine Learning, 2021.

Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Anchored diffusion language model. arXiv preprint
arXiv:2505.18456, 2025.

Chitwan Saharia, William Chan, Saurabh Saxena, et al. Imagen: Photorealistic text-to-image diffusion models. Advances
in Neural Information Processing Systems, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. International Conference on
Learning Representations, 2021.

Anwaar Ulhaq and Naveed Akhtar. Efficient diffusion models for vision: A survey, 2024. URL https://arxiv.
org/abs/2210.09292.

https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/2210.09292
https://arxiv.org/abs/2210.09292

POLYNOMIAL FLOW MATCHING 7

(A) Linear (B) Quadratic (C) Quartic

FIGURE 5. CIFAR-10: Generated samples under different polynomial flow-matching parameteriza-
tions.

FIGURE 6. CIFAR-10: Composite grid of samples comparing all polynomial flow-matching variants.

(A) Linear (B) Quadratic (C) Quartic

FIGURE 7. CIFAR-10: Training loss curves for linear and higher-order polynomial flow-matching
models.

7. APPENDIX

8 POLYNOMIAL FLOW MATCHING

ϕ0(x) = x0 (Noise) Step 1
Subspace Q2

Step 2
Subspace Q1

ϕ1(x) = x1 (Data)

Polynomial Flow ϕt(x)

vt0

vt1

vt2

FIGURE 8. Schematic of PFM using quadrants

	1. Introduction
	2. Related Work
	2.1. Continuous Normalizing Flows
	2.2. Diffusion Models and Structured Generation

	3. Background
	4. Approach
	5. Experimental Results
	6. Discussion and Future Work
	References
	7. Appendix

