Elliptic Curve Cryptography

Avi Bagchi

Mentor: Andrew Kwon

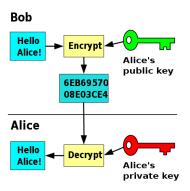
How do we send a secure message?

- ► Goal: Encrypt plaintext P into C
- Desired Properties
 - ightharpoonup \exists encryption function E
 - ightharpoonup \exists decryption function D
 - P = D(E(P))

Public-Key Cryptography

- ► E is public
 - E should not imply D
 - Authentication: E(D(C)) = C

Public-Key Cryptography

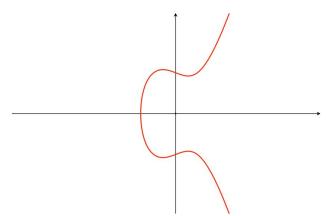


Elliptic Curve Cryptography

- Efficient alternative to RSA.
- Bitcoin

Elliptic Curves

$$y^2 = x^3 + ax + b$$



Group Structure

Elliptic curves naturally form group structure

- ▶ Identity element
- Associative operation
- Every element has inverse

We define elliptic curves over \mathbb{F}_p

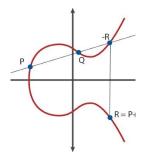
Identity Element

Point at infinity 0

 $ightharpoonup P \oplus \mathbf{0} = P$

Operation

- ► Define ⊕:
 - ▶ Define * : Draw line through P, Q and find third point -R such that P * Q = -R
 - ▶ Apply $-R * \mathbf{0}$ to find R
 - Reflecting over x-axis
- $ightharpoonup P \oplus Q = R$



Discrete Log Problem

- ▶ Given points on elliptic curve P_1, P_2
- ▶ To find P_2 from P_1 , how many times do we apply \oplus ?
- Finding k such that $P_2 = \underbrace{P_1 \oplus \cdots \oplus P_1}_{k \text{ times}} = kP_1$ is hard

Discrete Log Problem

- ightharpoonup Given base point P_1
- ▶ Public Key: $P_2 = kP_1$
- ▶ Private Key: Some $k \in \mathbb{Z}$

Attacks

Can the discrete log problem be solved efficiently?

- ► Idea: Starting with two points, find two distinct paths that yield the same third point
- Formally, find c'P + d'Q = c''P + d''Q such that $c' \neq c'', d' \neq d''$ and Q is a multiple of P

- ▶ Idea: Starting with two points, find two distinct paths that yield the same third point
- Formally, find c'P + d'Q = c''P + d''Q such that $c' \neq c'', d' \neq d''$ and Q is a multiple of P
- ▶ If we find c', c'', d', d'' and know Q = kP:

$$(c'-c'')P = (d''-d')Q = (d''-d')kP$$

$$(c'-c'')=(d''-d')k$$

$$k = (c' - c'')(d'' - d')^{-1}$$

How do we find c', c'', d', d''?

- ▶ Naiive: Random generation, storing all past operations
- ▶ Pollard's: Pseudo-random, space efficient

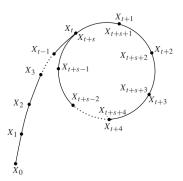
▶ For a point P, divide $\langle P \rangle$ into subsets $S_i...S_L$ each with associated coefficients a_i, b_i

- ► For a point P, divide $\langle P \rangle$ into subsets $S_i...S_L$ each with associated coefficients a_i, b_i
- ▶ Define $f: \langle P \rangle \implies \langle P \rangle$
- $\blacktriangleright \text{ For } X \in S_j, \ f(X) = X + a_j P + b_j Q$

- ► For a point P, divide $\langle P \rangle$ into subsets $S_i...S_L$ each with associated coefficients a_i, b_i
- ▶ Define $f: \langle P \rangle \implies \langle P \rangle$
- $\blacktriangleright \text{ For } X \in S_j, \ f(X) = X + a_j P + b_j Q$
- ▶ If X = cP + dQ, we can get to X' = f(X) with new coefficients c', d'
 - $ightharpoonup c' = c + a_j$ and $d' = d + b_j$

- ► For a point P, divide $\langle P \rangle$ into subsets $S_i...S_L$ each with associated coefficients a_i, b_i
- ▶ Define $f: \langle P \rangle \implies \langle P \rangle$
- $\blacktriangleright \text{ For } X \in S_j, \ f(X) = X + a_j P + b_j Q$
- ▶ If X = cP + dQ, we can get to X' = f(X) with new coefficients c', d'
 - $ightharpoonup c' = c + a_j$ and $d' = d + b_j$

- Eventually, there will be a cycle
 - ► Collision point found by Floyd's Cycle Finding algorithm
- ▶ \exists two distinct paths to the same point, so we can extract c', c'', d', d''



Proof of Correctness

- ► A cycle must exist
 - $ightharpoonup \langle P \rangle$ is finite, but the sequence is infinite
 - Pigeonhole Principle

Proof of Correctness

- ► A cycle must exist
 - $ightharpoonup \langle P \rangle$ is finite, but the sequence is infinite
 - Pigeonhole Principle
- ► Runtime: Collision expected after $\sqrt{\frac{\pi|\langle P \rangle|}{2}}$.
 - Analogous to visiting any vertex twice on random walk in complete graph (birthday paradox)

Post-Quantum Cryptography

- ▶ Pollard's Rho is the best known classical attack for general elliptic curves
- Fourier Transforms can also find these cycles
- Quantum computers compute Fourier Transforms extremely efficiently
- Using quantum computers with sufficiently large memory,
 Shor's Algorithm can break elliptic curve cryptography

Post-Quantum Cryptography

Are there quantum resistant protocols?

Acknowledgements

Thank you to Andrew and the DRP!